In [1]:
# Librerías 
import numpy as np
import matplotlib.pyplot as plt

#scipy
from scipy import stats,integrate
from scipy.optimize import curve_fit
import scipy 

#seaborn
import seaborn as sns

# Astropy
from astropy.io import fits
from astropy.table import QTable
from astropy.table import Table, join
import astropy.units as u
from astropy.wcs import WCS
import ligo.skymap.plot

# Cosas
import webbrowser

Funciones útiles

In [2]:
# Gaussiana 2d

def twoD_Gaussian(xy, amplitude, xo, yo, sigma_x, sigma_y, theta, offset):
    """ Crea una Gaussiana 2D
    parámetros: Coordendas, amplitud, centrado, sigmas, angulo del eje y nivel sobre
    el background"""
    x, y = xy
    xo = float(xo)
    yo = float(yo)    
    a = (np.cos(theta)**2)/(2*sigma_x**2) + (np.sin(theta)**2)/(2*sigma_y**2)
    b = -(np.sin(2*theta))/(4*sigma_x**2) + (np.sin(2*theta))/(4*sigma_y**2)
    c = (np.sin(theta)**2)/(2*sigma_x**2) + (np.cos(theta)**2)/(2*sigma_y**2)
    g = offset + amplitude*np.exp( - (a*((x-xo)**2) + 2*b*(x-xo)*(y-yo) 
                            + c*((y-yo)**2)))
    return g

Normalización de Histograma y la curva de densidad

.- Uso Kde y normalizo a mano con el intervalo y la altura de la barra o con el intervalo y la integral de la curva

In [3]:
# Librerias

#import numpy as np
#import matplotlib.pyplot as plt
#from scipy import stats,integrate
#import scipy 

#creo el vector de datos
vector=np.random.normal(size=10000)*13

# Elijo una canitdad de bins
bins=20

# Histograma con el comando de Numpy
histo_S,binEdges = np.histogram(vector,bins=bins)

# Histograma con el comando de matplotlib
out = plt.hist(vector, color='darkorange', alpha=0.5,bins=bins,edgecolor='black')
#out = plt.hist(vector,bins=bins)

# Imprimo datos parciales
#print("datos", out[0])
print("extremos del intervalo",np.max(binEdges),np.min(binEdges))

# calculo el KDE (Kernel Density Estimation)
kde1 = stats.gaussian_kde(vector)

# Considero un set de puntos para evaluar
x_eval = np.linspace(-50, 50, num=200)

# Calculo el intervalo
intervalo=(np.max(binEdges)-np.min(binEdges))/bins
print("Intervalo:",(np.max(binEdges)-np.min(binEdges))/bins)

# integral sobre la curva
print("Integral kde1",integrate.quad(kde1, -100,100))

# la suma del histograma
print("Suma histo:",np.sum(histo_S) )

# y la normalización
norma_S=np.sum(histo_S)*intervalo
print("Normalización: ",norma_S)

# Hago el dibujo multiplicando la curva normalizada a 1 por la constante calculada (norma_S)
plt.plot(x_eval,kde1(x_eval)*norma_S,'r-')
plt.show()
extremos del intervalo 48.265329600218614 -53.0855167998905
Intervalo: 5.0675423200054555
Integral kde1 (0.9999999999999979, 2.391519283318652e-09)
Suma histo: 10000
Normalización:  50675.42320005455
No description has been provided for this image
In [4]:
# También se podría haber hecho utilizando seaborn así:
#import seaborn as sns

sns.kdeplot(vector, fill=True,legend=True,label='Curva')
plt.legend()
plt.show()

# con Histplot (seaborn)
df = np.random.randn(100)
sns.histplot(vector, kde=True, bins=20)
plt.show()


# Con displot
#df = np.random.randn(100, 4)
sns.displot(vector, kde=True, bins=20)
plt.show()
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
In [5]:
# En 2D sería así:

# Librerias
#import numpy as np
#import matplotlib.pyplot as plt
#from scipy.optimize import curve_fit

# Parameters
num_points = 100000  # Number of points
mean = [0, 0]      # Mean of the Gaussian distribution
cov = [[2, 0],   # Covariance matrix (modificar para una elipse)
       [0, 2]]

# Generate random points from a 2D Gaussian distribution
points = np.random.multivariate_normal(mean, cov, num_points)

# Scatter plot of the generated points
plt.figure(figsize=(6, 6))
plt.scatter(points[:, 0], points[:, 1], alpha=0.5, marker='.')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('2D Gaussian Random Points')
plt.grid(True)
plt.show()

# Compute distances from the center
distances = np.sqrt(points[:, 0]**2 + points[:, 1]**2)

# Compute histogram with area normalization
bins = np.linspace(0, np.max(distances), 30)
hist, bin_edges = np.histogram(distances, bins=bins, density=True)

# Normalize by ring area
bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])
areas = np.pi * (bin_edges[1:]**2 - bin_edges[:-1]**2)
normalized_hist = hist / areas

# Plot density curve of distances
plt.figure(figsize=(5,5))
sns.kdeplot(distances, fill=True, color='blue', alpha=0.5)
plt.xlabel('Distance from Center')
plt.ylabel('Density')
plt.title('Density Curve of Distances from Gaussian Center')
plt.grid(True)
plt.show()


# Plot normalized density curve
plt.figure(figsize=(6, 4))
plt.plot(bin_centers, normalized_hist, marker='o', linestyle='-', color='blue')
plt.xlabel('Distance from Center')
plt.ylabel('Normalized Density')
plt.title('Area-Normalized Density Curve of Distances')
plt.grid(True)
plt.show()


# Define Gaussian function
def gaussian(x, a, mu, sigma):
    return a * np.exp(-((x - mu) ** 2) / (2 * sigma ** 2))

# Fit Gaussian curve to the normalized histogram
popt, _ = curve_fit(gaussian, bin_centers, normalized_hist, p0=[1, np.mean(distances), np.std(distances)])

# Print fitted parameters
a_fit, mu_fit, sigma_fit = popt
print(f"Fitted Parameters: a = {a_fit:.4f}, mu = {mu_fit:.4f}, sigma = {sigma_fit:.4f}")


# Plot normalized density curve with Gaussian fit
plt.figure(figsize=(6, 4))
plt.plot(bin_centers, normalized_hist, marker='o', linestyle='-', color='blue', label='Data')
plt.plot(bin_centers, gaussian(bin_centers, *popt), linestyle='--', color='red', label='Gaussian Fit')
plt.xlabel('Distance from Center')
plt.ylabel('Normalized Density')
plt.title('Area-Normalized Density with Gaussian Fit')
plt.legend()
plt.grid(True)
plt.show()


# Plot normalized density curve
plt.figure(figsize=(6, 4))
plt.plot(bin_centers, hist, marker='o', linestyle='-', color='blue')
plt.xlabel('Distance from Center')
plt.ylabel('Normalized Density')
plt.title('Area-Normalized Density Curve of Distances')
plt.grid(True)
plt.show()
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
Fitted Parameters: a = 0.3519, mu = 0.0054, sigma = 1.4086
No description has been provided for this image
No description has been provided for this image
In [6]:
# Dibujo y ajusto la curva

#import numpy as np
#import matplotlib.pyplot as plt
#import seaborn as sns
#from scipy.optimize import curve_fit

# Parameters
num_points = 100000  # Number of points
mean = [0, 0]      # Mean of the Gaussian distribution
cov = [[1, 0.5],   # Covariance matrix
       [0.5, 1]]

# Generate random points from a 2D Gaussian distribution
points = np.random.multivariate_normal(mean, cov, num_points)

# Scatter plot of the generated points
plt.figure(figsize=(6, 6))
plt.scatter(points[:, 0], points[:, 1], alpha=0.5, marker='o')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('2D Gaussian Random Points')
plt.grid(True)
plt.show()

# Compute distances from the center
distances = np.sqrt(points[:, 0]**2 + points[:, 1]**2)

# Compute histogram with area normalization
bins = np.linspace(0, np.max(distances), 30)
hist, bin_edges = np.histogram(distances, bins=bins, density=True)

# Normalize by ring area
bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])
areas = np.pi * (bin_edges[1:]**2 - bin_edges[:-1]**2)
normalized_hist = hist / areas

# Define Gaussian function
def gaussian(x, a, mu, sigma):
    return a * np.exp(-((x - mu) ** 2) / (2 * sigma ** 2))

# Fit Gaussian curve to the normalized histogram
popt, _ = curve_fit(gaussian, bin_centers, normalized_hist, p0=[1, np.mean(distances), np.std(distances)])

# Print fitted parameters
a_fit, mu_fit, sigma_fit = popt
print(f"Fitted Parameters: a = {a_fit:.4f}, mu = {mu_fit:.4f}, sigma = {sigma_fit:.4f}")

# Plot normalized density curve with Gaussian fit
plt.figure(figsize=(6, 4))
plt.plot(bin_centers, normalized_hist, marker='o', linestyle='-', color='blue', label='Data')
plt.plot(bin_centers, gaussian(bin_centers, *popt), linestyle='--', color='red', label='Gaussian Fit')
plt.xlabel('Distance from Center')
plt.ylabel('Normalized Density')
plt.title('Area-Normalized Density with Gaussian Fit')
plt.legend()
plt.grid(True)
plt.show()
No description has been provided for this image
Fitted Parameters: a = 0.9337, mu = -0.1199, sigma = 0.9809
No description has been provided for this image

Lectura de un archivo Fits que contiene una tabla Astropy

In [7]:
# Leo Fits y agrego los datos a una tabla

#from astropy.io import fits
#from astropy.table import QTable
#from astropy.table import Table, join

hdu_list = fits.open('J_A+A_686_A42_clusters.dat.gz.fits')
hdu_list.info()

print(hdu_list[1].columns)
data = Table(hdu_list[1].data)
data.info()
Filename: J_A+A_686_A42_clusters.dat.gz.fits
No.    Name      Ver    Type      Cards   Dimensions   Format
  0  PRIMARY       1 PrimaryHDU      81   ()      
  1  clusters.dat    1 TableHDU       484   7167R x 75C   [A20, I4, A253, A1, F11.8, I6, F11.8, I5, F12.8, F12.8, F12.8, E11.4, F11.8, F11.8, F11.8, F11.8, F13.8, F13.8, F13.8, F13.8, F13.8, F11.8, F10.8, F12.8, F11.8, F10.8, F12.8, F11.8, F10.8, F15.8, F15.8, F16.8, I5, I1, F16.8, F16.8, F16.8, F13.8, F13.8, F13.8, I4, E9.4, E9.4, F10.8, F10.8, F10.8, A3, F11.8, F11.8, F12.8, E9.4, F11.8, F11.8, E9.4, F11.8, F11.8, F12.8, F12.8, F12.8, F11.8, F12.8, F12.8, F13.8, E10.4, I4, F15.8, F15.8, F15.8, F15.8, I2, I1, I1, I2, A16, A33]   
ColDefs(
    name = 'Name'; format = 'A20'; start = 1
    name = 'ID'; format = 'I4'; disp = 'I4'; start = 22
    name = 'AllNames'; format = 'A253'; start = 27
    name = 'Type'; format = 'A1'; start = 281
    name = 'CST'; format = 'F11.8'; disp = 'F11.8'; start = 283
    name = 'N'; format = 'I6'; disp = 'I6'; start = 295
    name = 'CSTt'; format = 'F11.8'; disp = 'F11.8'; start = 302
    name = 'Nt'; format = 'I5'; disp = 'I5'; start = 314
    name = 'RAdeg'; format = 'F12.8'; unit = 'deg'; disp = 'F12.8'; start = 320
    name = 'DEdeg'; format = 'F12.8'; unit = 'deg'; disp = 'F12.8'; start = 333
    name = 'GLON'; format = 'F12.8'; unit = 'deg'; disp = 'F12.8'; start = 346
    name = 'GLAT'; format = 'E11.4'; unit = 'deg'; disp = 'E11.4'; start = 359
    name = 'r50'; format = 'F11.8'; unit = 'deg'; disp = 'F11.8'; start = 371
    name = 'rc'; format = 'F11.8'; unit = 'deg'; disp = 'F11.8'; start = 383
    name = 'rt'; format = 'F11.8'; unit = 'deg'; disp = 'F11.8'; start = 395
    name = 'rtot'; format = 'F11.8'; unit = 'deg'; disp = 'F11.8'; start = 407
    name = 'r50pc'; format = 'F13.8'; unit = 'pc'; disp = 'F13.8'; start = 419
    name = 'rcpc'; format = 'F13.8'; unit = 'pc'; disp = 'F13.8'; start = 433
    name = 'rtpc'; format = 'F13.8'; unit = 'pc'; disp = 'F13.8'; start = 447
    name = 'rtotpc'; format = 'F13.8'; unit = 'pc'; disp = 'F13.8'; start = 461
    name = 'pmRA'; format = 'F13.8'; unit = 'mas/yr'; disp = 'F13.8'; start = 475
    name = 's_pmRA'; format = 'F11.8'; unit = 'mas/yr'; disp = 'F11.8'; start = 489
    name = 'e_pmRA'; format = 'F10.8'; unit = 'mas/yr'; disp = 'F10.8'; start = 501
    name = 'pmDE'; format = 'F12.8'; unit = 'mas/yr'; disp = 'F12.8'; start = 512
    name = 's_pmDE'; format = 'F11.8'; unit = 'mas/yr'; disp = 'F11.8'; start = 525
    name = 'e_pmDE'; format = 'F10.8'; unit = 'mas/yr'; disp = 'F10.8'; start = 537
    name = 'Plx'; format = 'F12.8'; unit = 'mas'; disp = 'F12.8'; start = 548
    name = 's_Plx'; format = 'F11.8'; unit = 'mas'; disp = 'F11.8'; start = 561
    name = 'e_Plx'; format = 'F10.8'; unit = 'mas'; disp = 'F10.8'; start = 573
    name = 'dist16'; format = 'F15.8'; unit = 'pc'; disp = 'F15.8'; start = 584
    name = 'dist50'; format = 'F15.8'; unit = 'pc'; disp = 'F15.8'; start = 600
    name = 'dist84'; format = 'F16.8'; unit = 'pc'; disp = 'F16.8'; start = 616
    name = 'Ndist'; format = 'I5'; disp = 'I5'; start = 633
    name = 'globalPlx'; format = 'I1'; disp = 'I1'; start = 639
    name = 'X'; format = 'F16.8'; unit = 'pc'; disp = 'F16.8'; start = 641
    name = 'Y'; format = 'F16.8'; unit = 'pc'; disp = 'F16.8'; start = 658
    name = 'Z'; format = 'F16.8'; unit = 'pc'; disp = 'F16.8'; start = 675
    name = 'RV'; format = 'F13.8'; unit = 'km/s'; disp = 'F13.8'; start = 692
    name = 's_RV'; format = 'F13.8'; unit = 'km/s'; disp = 'F13.8'; start = 706
    name = 'e_RV'; format = 'F13.8'; unit = 'km/s'; disp = 'F13.8'; start = 720
    name = 'n_RV'; format = 'I4'; disp = 'I4'; start = 734
    name = 'CMDCl2.5'; format = 'E9.4'; disp = 'E9.4'; start = 739
    name = 'CMDCl16'; format = 'E9.4'; disp = 'E9.4'; start = 749
    name = 'CMDCl50'; format = 'F10.8'; disp = 'F10.8'; start = 759
    name = 'CMDCl84'; format = 'F10.8'; disp = 'F10.8'; start = 770
    name = 'CMDCl97.5'; format = 'F10.8'; disp = 'F10.8'; start = 781
    name = 'CMDClHuman'; format = 'A3'; start = 792
    name = 'logAge16'; format = 'F11.8'; unit = '[yr]'; disp = 'F11.8'; start = 796
    name = 'logAge50'; format = 'F11.8'; unit = '[yr]'; disp = 'F11.8'; start = 808
    name = 'logAge84'; format = 'F12.8'; unit = '[yr]'; disp = 'F12.8'; start = 820
    name = 'AV16'; format = 'E9.4'; unit = 'mag'; disp = 'E9.4'; start = 833
    name = 'AV50'; format = 'F11.8'; unit = 'mag'; disp = 'F11.8'; start = 843
    name = 'AV84'; format = 'F11.8'; unit = 'mag'; disp = 'F11.8'; start = 855
    name = 'diffAV16'; format = 'E9.4'; unit = 'mag'; disp = 'E9.4'; start = 867
    name = 'diffAV50'; format = 'F11.8'; unit = 'mag'; disp = 'F11.8'; start = 877
    name = 'diffAV84'; format = 'F11.8'; unit = 'mag'; disp = 'F11.8'; start = 889
    name = 'MOD16'; format = 'F12.8'; unit = 'mag'; disp = 'F12.8'; start = 901
    name = 'MOD50'; format = 'F12.8'; unit = 'mag'; disp = 'F12.8'; start = 914
    name = 'MOD84'; format = 'F12.8'; unit = 'mag'; disp = 'F12.8'; start = 927
    name = 'r50J'; format = 'F11.8'; unit = 'deg'; disp = 'F11.8'; start = 940
    name = 'rJ'; format = 'F12.8'; unit = 'deg'; disp = 'F12.8'; start = 952
    name = 'r50Jpc'; format = 'F12.8'; unit = 'pc'; disp = 'F12.8'; start = 965
    name = 'rJpc'; format = 'F13.8'; unit = 'pc'; disp = 'F13.8'; start = 978
    name = 'probJ'; format = 'E10.4'; disp = 'E10.4'; start = 992
    name = 'NJ'; format = 'I4'; disp = 'I4'; start = 1003
    name = 'MassJ'; format = 'F15.8'; unit = 'Msun'; disp = 'F15.8'; start = 1008
    name = 'e_MassJ'; format = 'F15.8'; unit = 'Msun'; disp = 'F15.8'; start = 1024
    name = 'MassTot'; format = 'F15.8'; unit = 'Msun'; disp = 'F15.8'; start = 1040
    name = 'e_MassTot'; format = 'F15.8'; unit = 'Msun'; disp = 'F15.8'; start = 1056
    name = 'minClSize'; format = 'I2'; disp = 'I2'; start = 1072
    name = 'isMerged'; format = 'I1'; disp = 'I1'; start = 1075
    name = 'isGMMMemb'; format = 'I1'; disp = 'I1'; start = 1077
    name = 'NXmatches'; format = 'I2'; disp = 'I2'; start = 1079
    name = 'XmatchType'; format = 'A16'; start = 1082
    name = 'Note'; format = 'A33'; start = 1099
)
<Table length=7167>
   name     dtype 
---------- -------
      Name   str20
        ID   int16
  AllNames  str253
      Type    str1
       CST float64
         N   int32
      CSTt float64
        Nt   int32
     RAdeg float64
     DEdeg float64
      GLON float64
      GLAT float64
       r50 float64
        rc float64
        rt float64
      rtot float64
     r50pc float64
      rcpc float64
      rtpc float64
    rtotpc float64
      pmRA float64
    s_pmRA float64
    e_pmRA float64
      pmDE float64
    s_pmDE float64
    e_pmDE float64
       Plx float64
     s_Plx float64
     e_Plx float64
    dist16 float64
    dist50 float64
    dist84 float64
     Ndist   int32
 globalPlx   int16
         X float64
         Y float64
         Z float64
        RV float64
      s_RV float64
      e_RV float64
      n_RV   int16
  CMDCl2.5 float64
   CMDCl16 float64
   CMDCl50 float64
   CMDCl84 float64
 CMDCl97.5 float64
CMDClHuman    str3
  logAge16 float64
  logAge50 float64
  logAge84 float64
      AV16 float64
      AV50 float64
      AV84 float64
  diffAV16 float64
  diffAV50 float64
  diffAV84 float64
     MOD16 float64
     MOD50 float64
     MOD84 float64
      r50J float64
        rJ float64
    r50Jpc float64
      rJpc float64
     probJ float64
        NJ   int16
     MassJ float64
   e_MassJ float64
   MassTot float64
 e_MassTot float64
 minClSize   int16
  isMerged   int16
 isGMMMemb   int16
 NXmatches   int16
XmatchType   str16
      Note   str33

Dibujos con la proyección en el cielo

In [8]:
# Librerias

#import numpy as np
#from matplotlib import pyplot as plt
#import astropy.units as u
#from astropy.wcs import WCS
#import ligo.skymap.plot


#Tengo que tener ra y dec en grados 

ra = [40.0,30.0,180]
dec = [-69.232,-72,0]

ax = plt.axes(projection='astro zoom',
               center='4h  -69d 45.4m', radius='15 deg')

ax.figure.set_size_inches(5, 5)

ax.grid()
ax.plot(ra,dec,"ro",markersize=10,transform=ax.get_transform('world'))
plt.show()
No description has been provided for this image

Abrir una página web en el Browser desde python

In [9]:
# librerías
#import webbrowser

# Sólo estos dos comandos son necesarios (o quizás uno sólo!)
#url="https://earth.google.com"
#webbrowser.open(url)
Out[9]:
True